Stability and Instability in Discrete Tomography
نویسندگان
چکیده
The paper gives strong instability results for a basic reconstruction problem of discrete tomography, an area that is particularly motivated by demands from material sciences for the reconstruction of crystalline structures from images produced by quantitative high resolution transmission electron microscopy. In particular, we show that even extremely small changes in the data may lead to entirely different solutions. We will also give some indication of how one can possibly handle the ill-posedness of the reconstruction problem in practice.
منابع مشابه
Rock Slope Stability Analysis Using Discrete Element Method
Rock slope stability depends very much on the strength features of the rock and the geometrical and strength characteristics of the discontinuities (e.g., roughness, wall strength and persistence). Since a rock mass is not a continuum, its behavior is dominated by such discontinuities as faults, joints and bedding planes. Also, Rock slope instability is a major hazard for human activities and o...
متن کاملOn the Stability of Reconstructing Lattice Sets from X-rays Along Two Directions
We consider the stability problem of reconstructing lattice sets from their noisy X-rays (i.e. line sums) taken along two directions. Stability is of major importance in discrete tomography because, in practice, these X-rays are affected by errors due to the nature of measurements. It has been shown that the reconstruction from noisy X-rays taken along more than two directions can lead to drama...
متن کاملNew Approach to Instability Threshold of a Simply Supported Rayleigh Shaft
The main goal of this research is to analyse the effect of angular velocity on stability and vibration of a simply supported Rayleigh rotating shaft. To this end, non-dimensional kinetic and potential energies are written while lateral vibration is considered. Finite element method is employed to discrete the formulations and Linear method is applied to analyse instability threshold of a rotati...
متن کاملDISCRETE TOMOGRAPHY AND FUZZY INTEGER PROGRAMMING
We study the problem of reconstructing binary images from four projections data in a fuzzy environment. Given the uncertainly projections,w e want to find a binary image that respects as best as possible these projections. We provide an iterative algorithm based on fuzzy integer programming and linear membership functions.
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کامل